

Section 1. Filled-in kill sheet exercises - Gauge problem exercises

Gauge problem exercises are created from a pre-completed kill sheet containing all relevant volume and pressure calculations.

Each question is based on strokes, pump rate, drillpipe and casing gauge readings at a specific point in time during well kill operation. Any one or a combination of these readings could indicate the action required. Options are shown in the multiple-choice answers.

The casing and/or drillpipe pressures will only be relevant to the action if:

 The casing and/or drillpipe pressures given in the question are below the expected pressures.

or

 The casing and/or drillpipe pressures given in the question are 5 bar or more above the expected pressures.

Section 2. Calculation formula

Abbreviation	Term	
0.0981	constant factor	
1	litres	
I/m	litres per metre	
I/min	litres per minute	
l/stroke	litres per stroke	
BHP	bottomhole pressure	
BOP	blowout preventer	
m	metres	
m/hr	metres per hour	
m/min	metres per minute	
LOT	leak-off test	
MAASP	maximum allowable annular surface pressure	
kg/l	kilograms per litre	
bar	bar (pressure)	
bar/m	bar per metre	
bar/hr	bar per hour	
SICP	shut-in casing pressure	
SIDPP	shut-in drillpipe pressure	
SPM	strokes per minute	
TVD	true vertical depth	

1. Hydrostatic pressure (bar)

fluid density (kg/l)
$$\times$$
 0.0981 \times TVD (m)

2. Pressure gradient (bar/m)

3. Fluid density (kg/l)

or

4. Formation pressure (bar)

hydrostatic pressure in drillstring (bar) + SIDPP (bar)

5. Pump output (I/min)

6. Equivalent circulating density (kg/l)

fluid density (kg/l) + (annular pressure loss (bar) ÷ TVD (m) ÷ 0.0981) or fluid density (kg/l) +
$$\left(\frac{\text{annular pressure loss (bar)}}{\text{TVD (m)} \times 0.0981}\right)$$

7. Fluid density (kg/l) with trip margin (bar) included

fluid density (kg/l) + (trip margin (bar) ÷ TVD (m) ÷ 0.0981) or fluid density (kg/l) +
$$\left(\frac{\text{trip margin (bar)}}{\text{TVD (m)} \times 0.0981}\right)$$

8. New pump pressure (bar) with new pump rate (SPM) (approximate)

current pump pressure (bar)
$$\times \left(\frac{\text{new pump rate (SPM)}}{\text{current pump rate (SPM)}}\right)^2$$

	May 2024	EX-0036	Version 4.0	Page 2 of 5
--	----------	---------	-------------	-------------

9. New pump pressure (bar) with new fluid density (kg/l) (approximate)

current pump pressure (bar)
$$\times \left(\frac{\text{new fluid density (kg/l)}}{\text{current fluid density (kg/l)}}\right)$$

10. Maximum allowable fluid density (kg/l)

LOT fluid density (kg/l) + (surface LOT pressure (bar) ÷ casing shoe TVD (m) ÷ 0.0981) or LOT fluid density (kg/l) +
$$\left(\frac{\text{surface LOT pressure (bar)}}{\text{casing shoe TVD (m)}}\right)$$

11. MAASP (bar)

(maximum allowable fluid density (kg/l) - current fluid density (kg/l)) × 0.0981 × casing shoe TVD (m)

12. Kill fluid density (kg/l)

current fluid density (kg/l) + (SIDPP (bar) ÷ TVD (m) ÷ 0.0981) or current fluid density (kg/l) +
$$\left(\frac{\text{SIDPP (bar)}}{\text{TVD (m)} \times 0.0981}\right)$$

13. Initial circulating pressure (bar)

circulating pressure at kill rate (bar) + SIDPP (bar)

14. Final circulating pressure (bar)

$$\left(\frac{\text{kill fluid density (kg/l)}}{\text{current fluid density (kg/l)}}\right) \; \times \; \text{circulating pressure at kill rate (bar)}$$

15. Gas migration rate (m/hr)

rate of increase in surface pressure (bar/hr) ÷ fluid density (kg/l) ÷ 0.0981

or

rate of increase in surface pressure (bar/hr)

fluid density (kg/l) × 0.0981

16. Gas laws

$$P_1 \times V_1 = P_2 \times V_2$$

$$P_1 = \frac{P_2 \times V_2}{V_1}$$

$$V_1 = \frac{P_2 \times V_2}{P_1}$$

$$P_2 = \frac{P_1 \times V_1}{V_2}$$

$$V_2 = \frac{P_1 \times V_1}{P_2}$$

17. Pressure drop per metre tripping dry pipe (bar/m)

fluid density (kg/l) \times 0.0981 \times metal displacement (l/m) riser or casing capacity (l/m) - metal displacement (l/m)

18. Pressure drop per metre tripping wet pipe (bar/m)

fluid density (kg/l) \times 0.0981 \times closed end displacement (l/m) riser or casing capacity (l/m) - closed end displacement (l/m)

19. Level drop pulling remaining collars out of well dry (m)

length of collars (m) × metal displacement (l/m) riser or casing capacity (l/m)

20. Level drop pulling remaining collars out of well wet (m)

length of collars (m) × closed end displacement (l/m) riser or casing capacity (l/m)

21. Length of tubulars to pull dry before overbalance is lost (m)

overbalance (bar) × (riser or casing capacity (l/m) - metal displacement (l/m))
fluid gradient (bar/m) × metal displacement (l/m)
or

overbalance (bar) \times (riser or casing capacity (l/m) - metal displacement (l/m)) fluid density (kg/l) \times 0.0981 \times metal displacement (l/m)

22. Length of tubulars to pull wet before overbalance is lost (m)

23. Volume to bleed due to gas migration in a vertical well (I)

working pressure to bleed (bar)
$$\times \left(\frac{\text{annular capacity (I/m)}}{\text{pressure gradient (bar/m)}}\right)$$

or

working pressure to bleed (bar)
$$\times \left(\frac{\text{annular capacity (l/m)}}{\text{fluid density (kg/l)} \times 0.0981}\right)$$

24. Slug volume (litre) for a given length of dry pipe

$$\frac{\text{length of dry pipe (m)} \times \text{pipe capacity (l/m)} \times \text{current fluid density (kg/l)}}{\text{slug density (kg/l)}} - \text{current fluid density (kg/l)}$$

25. Pit gain due to slug U-tubing (litre)

slug volume (I)
$$\times \left(\frac{\text{slug density (kg/l)}}{\text{current fluid density (kg/l)}} - 1 \right)$$

26. Riser margin (kg/l)

$$\frac{\left(\left(\text{air gap (m)} + \text{water depth (m)}\right) \times \text{fluid density (kg/l)}\right) - \left(\text{water depth (m)} \times \text{water density (kg/l)}\right)}{\text{TVD (m)} - \text{air gap (m)} - \text{water depth (m)}}$$

27. Hydrostatic pressure loss if casing float fails (bar)

$$\frac{\text{fluid density (kg/l)} \times 0.0981 \times \text{casing capacity (l/m)} \times \text{unfilled casing height (m)}}{\text{casing capacity (l/m)} + \text{annular capacity (l/m)}}$$