

Section 1. Filled-in kill sheet exercises - Gauge problem exercises

Gauge problem exercises are created from a pre-completed kill sheet containing all relevant volume and pressure calculations.

Each question is based on strokes, pump rate, drillpipe and casing gauge readings at a specific point in time during well kill operation. Any one or a combination of these readings could indicate the action required. Options are shown in the multiple-choice answers.

The casing and/or drillpipe pressures will only be relevant to the action if:

 The casing and/or drillpipe pressures given in the question are below the expected pressures.

or

• The casing and/or drillpipe pressures given in the question are 5 bar or more above the expected pressures.

Section 2. Calculation formula

Abbreviation	Term
10.2	constant factor
1	litres
I/m	litres per metre
I/min	litre per minute
l/stroke	litres per stroke
BHP	bottomhole pressure
BOP	blowout preventer
m	metres
m/hr	metres per hour
m/min	metres per minute
LOT	leak-off test
MAASP	maximum allowable annular surface pressure
kg/l	kilogram per litre
bar	bar (pressure)
bar/m	bar per metre
bar/hr	bar per hour
SICP	shut-in casing pressure
SIDPP	shut-in drillpipe pressure
SPM	strokes per minute
TVD	true vertical depth

1. Hydrostatic pressure (bar)

$$\frac{\text{fluid density (kg/l)} \times \text{TVD(m)}}{10.2}$$

2. Pressure gradient (bar/m)

3. Fluid density (kg/l)

hydrostatic pressure (bar)
$$\div$$
 TVD (m) \times 10.2 or
$$\frac{\text{hydrostatic pressure (bar)} \times 10.2}{\text{TVD (m)}}$$

4. Formation pressure (bar)

hydrostatic pressure in drillstring (bar) + SIDPP (bar)

5. Pump output (I/min)

pump displacement (I/stroke) × pump rate (SPM)

6. Equivalent circulating density (kg/l)

fluid density (kg/l) + (annular pressure loss (bar) ÷ TVD (m) × 10.2) or fluid density (kg/l) +
$$\left(\frac{\text{annular pressure loss (bar)} \times 10.2}{\text{TVD (m)}}\right)$$

7. Fluid density (kg/l) with trip margin (bar) included

fluid density (kg/l) + (trip margin (bar) ÷ TVD (m) × 10.2) or fluid density (kg/l) +
$$\left(\frac{\text{trip margin (bar)} \times 10.2}{\text{TVD (m)}}\right)$$

8. New pump pressure (bar) with new pump rate (SPM) (approximate)

current pump pressure (bar)
$$\times \left(\frac{\text{new pump rate (SPM)}}{\text{current pump rate (SPM)}}\right)^2$$

9. New pump pressure (bar) with new fluid density (kg/l) (approximate)

current pump pressure (bar)
$$\times \left(\frac{\text{new fluid density (kg/l)}}{\text{current fluid density (kg/l)}}\right)$$

10. Maximum allowable fluid density (kg/l)

LOT fluid density (kg/l) + (surface LOT pressure (bar) ÷ casing shoe TVD (m) × 10.2) or LOT fluid density (kg/l) +
$$\left(\frac{\text{surface LOT pressure (bar)} \times 10.2}{\text{casing shoe TVD (m)}}\right)$$

11. MAASP (bar)

$$\frac{\left(\text{maximum allowable fluid density (kg/l)} - \text{current fluid density (kg/l)}\right) \times \text{casing shoe TVD (m)}}{10.2}$$

12. Kill fluid density (kg/l)

or current fluid density (kg/l) +
$$\left(\frac{\text{SIDPP (bar)} \times 10.2}{\text{TVD (m)}}\right)$$

current fluid density (kg/l) + (SIDPP (bar) ÷ TVD (m) × 10.2)

13. Initial circulating pressure (bar)

circulating pressure at kill rate (bar) + SIDPP (bar)

14. Final circulating pressure (bar)

$$\left(\frac{\text{kill fluid density (kg/l)}}{\text{current fluid density (kg/l)}}\right) \times \text{circulating pressure at kill rate (bar)}$$

15. Gas migration rate (m/hr)

rate of increase in surface pressure (bar/hr) ÷ fluid density (kg/l) × 10.2

or

rate of increase in surface pressure (bar/hr) × 10.2 fluid density (kg/l)

Gas laws 16.

$$P_1 \times V_1 = P_2 \times V_2$$

$$P_1 = \frac{P_2 \times V_2}{V_1}$$
 $V_1 = \frac{P_2 \times V_2}{P_1}$

$$V_1 = \frac{P_2 \times V_2}{P_1}$$

$$P_2 = \frac{P_1 \times V_1}{V_2} \qquad V_2 = \frac{P_1 \times V_1}{P_2}$$

$$V_2 = \frac{P_1 \times V_1}{P_2}$$

17. Pressure drop per metre tripping dry pipe (bar/m)

fluid density (kg/l) × metal displacement (l/m) (riser or casing capacity (l/m) - metal displacement (l/m)) × 10.2

18. Pressure drop per metre tripping wet pipe (bar/m)

fluid density (kg/l) × closed end displacement (l/m) (riser or casing capacity (I/m) - closed end displacement (I/m)) × 10.2

Level drop pulling remaining collars out of well dry (m) 19.

length of collars (m) × metal displacement (l/m) riser or casing capacity (I/m)

Level drop pulling remaining collars out of well wet (m) 20.

length of collars (m) × closed end displacement (l/m) riser or casing capacity (I/m)

21. Length of tubulars to pull dry before overbalance is lost (m)

22. Length of tubulars to pull wet before overbalance is lost (m)

23. Volume to bleed due to gas migration in a vertical well (I)

working pressure to bleed (bar)
$$\times \left(\frac{\text{annular capacity (I/m)}}{\text{pressure gradient (bar/m)}}\right)$$
or
working pressure to bleed (bar) $\times \left(\frac{\text{annular capacity (I/m)} \times 10.2}{\text{fluid density (kg/l)}}\right)$

24. Slug volume (I) for a given length of dry pipe

25. Pit gain due to slug U-tubing (I)

slug volume (I)
$$\times \left(\frac{\text{slug density (kg/l)}}{\text{current fluid density (kg/l)}} - 1 \right)$$

26. Riser margin (kg/l)

$$\frac{\left(\left(\text{air gap (m) + water depth (m)}\right) \times \text{ fluid density (kg/l)}\right) - \left(\text{water depth (m)} \times \text{ water density (kg/l)}\right)}{\text{TVD (m) - air gap (m) - water depth (m)}}$$

27. Hydrostatic pressure loss if casing float fails (bar)

$$\frac{\text{fluid density (kg/l)} \times \text{casing capacity (l/m)} \times \text{unfilled casing height (m)}}{\left(\text{casing capacity (l/m)} + \text{annular capacity (l/m)}\right) \times 10.2}$$