

Раздел 1. Упражнения по заполненной карте глушения – Меры, принимаемые в связи с показаниями манометров

Упражнения для решения задач по показаниям приборов составлены, исходя из заполненного листа глушения с уже произведенными всеми необходимыми расчётами объёмов и давлений.

Каждый вопрос основан на данных о суммарном числе ходов, производительности насоса и показаниях манометров на стояке бурильных труб и обсадной колонне в конкретные моменты операции глушения скважины. Любое из показаний или их комбинация могут указывать на действия, которые необходимо предпринять. Варианты даны в виде ответов на выбор.

Давления на устье в КП и/или бурильных трубах потребуют предпринять соответствующие действия, только если:

- Давления в КП и/или в бурильных трубах, данные в вопросе, ниже ожидаемых давлений, или
- Давления в КП и/или в бурильных трубах, данные в вопросе, выше ожидаемых давлений на 70 рsi или более.

Раздел 2. Расчётные формулы

Аббревиатура	Значение
0.052	константа
баррель	баррель (США)
баррель/фут	баррелей (США) на фут
баррель/мин	баррелей (США) в минуту
баррель/ход	баррелей (США) за ход
фут	футы
фут/час	футов в час
фут/мин	футов в минуту
фунт/баррель	фунтов на баррель
ИПП	испытание пласта на приемистость
MAASP	максимально допустимое устьевое давление в КП
фунт/галлон	фунтов на галлон
psi	фунтов на квадратный дюйм
psi/фут	фунтов на квадратный дюйм на фут
psi/ч	фунтов на квадратный дюйм в час
SICP	давление стабилизации в КП
SIDPP	давление стабилизации в бурильных трубах
ход/мин	ходов в минуту
ГСВ	глубина скважины по вертикали
КП	кольцевое пространство

1. Гидростатическое давление (psi)

Плотность флюида (фунт/галлон) × 0.052 × ГСВ (фут)

2. Градиент давления (psi/фут)

Плотность флюида (фунт/галлон) × 0.052

3. Плотность флюида (фунт/галлон)

Гидростатическое давление (psi) ÷ ГСВ (фут) ÷ 0.052

или

Гидростатическое давление (psi)

ГСВ (фут) × 0.052

4. Пластовое давление (psi)

Гидростатическое давление в бурильной колонне (psi) + SIDPP (psi)

5. Подача насоса (баррель/мин)

Производительность насоса (баррель/ход) × Скорость насоса (ход/мин)

6. Эквивалентная плотность циркуляции (фунт/галлон)

Плотность флюида (фунт/галлон) + (Потери давления в КП (psi) \div ГСВ (фут) \div 0.052)

ИЛИ

Плотность флюида (фунт/галлон) + $\left(\frac{\Pi \text{отери давления в } \text{К}\Pi(\text{psi})}{\Gamma \text{CB } (\text{фут}) \times 0.052}\right)$

7. Плотность флюида (фунт/галлон) с учётом запаса безопасности (psi) при СПО

Плотность флюида (фунт/галлон) + (Запас безопасности (psi) ÷ ГСВ (фут) ÷ 0.052)

или

Плотность флюида (фунт/галлон) + $\left(\frac{3 \text{апас безопасности (psi)}}{\Gamma \text{CB (фут)} \times 0.052}\right)$

8. Приближённое значение давления на насосе (psi) при прокачке с новой скоростью (ход/мин)

Старое значение давления (psi)
$$\times \left(\frac{\text{Новая скорость насоса (ход/мин)}}{\text{Старая скорость насоса (ход/мин)}} \right)^2$$

9. Приближённое значение давления на насосе (psi) при прокачке раствора новой плотности (фунт/галлон)

Старое значение давления (psi) $\times \left(\frac{\text{Новая плотность флюида (фунт/галлон)}}{\text{Старая плотность флюида (фунт/галлон)}} \right)$

10. Максимально допустимая плотность флюида (фунт/галлон)

Плотн. флюида при ИПП (фунт/галлон) + (Устьевое давл. при ИПП (psi) ÷ ГСВ башмака (фут) ÷ 0.052) или

Плотность флюида при ИПП (фунт/галлон) + $\left(\frac{\text{Устьевое давление при ИПП (psi)}}{\text{ГСВ башмака (фут)}} \times 0.052 \right)$

11. Максимально допустимое устьевое давление в КП (MAASP) (psi)

(Макс. допуст. плотн. флюида (фунт/галлон) - Плотн. флюида в скважине (фунт/галлон)) × 0.052 × ГСВ башм. (фут)

12. Плотность раствора глушения (фунт/галлон)

Плотность раствора в скважине (фунт/галлон) + (SIDPP (psi) ÷ ГСВ (фут) ÷ 0.052)

ипи

Плотность раствора в скважине (фунт/галлон) + $\left(\frac{\text{SIDPP (psi)}}{\Gamma\text{CB (фут)} \times 0.052}\right)$

13. Начальное давление циркуляции (psi)

Давление прокачки на скорости глушения (psi) + SIDPP (psi)

14. Конечное давление циркуляции (psi)

(Плотность раствора глушения (фунт/галлон) Плотность раствора в скважине(фунт/галлон) х Давление прокачки на скорости глушения (рsi)

15. Скорость миграции газа (фут/ч)

Скорость роста давления в бурильных трубах (psi/ч) ÷ Плотность раствора (фунт/галлон) ÷ 0.052 или

Скорость роста давления в бурильных трубах (psi/ч)

Плотность раствора (фунт/галлон) × 0.052

16. Газовые законы

$$P1 \times V1 = P2 \times V2$$

$$P1 = \frac{P2 \times V2}{V1} \qquad V1 = \frac{P2 \times V2}{P1}$$

$$P_2 = \frac{P_1 \times V_1}{V_2} \qquad V_2 = \frac{P_1 \times V_1}{P_2}$$

17. Снижение давления в скважине при подъёме 1 фута бурильной трубы без сифона (psi/фут)

Плотность флюида (фунт/галлон) × 0.052 × Удельный объём металла трубы (баррель/фут) Уд. внутр. объём обс. трубы/райзера (баррель/фут) - Удельный объём металла трубы (баррель/фут)

18. Снижение давления в скважине при подъёме 1 фута бурильной трубы с сифоном (psi/фут)

Плотность флюида (фунт/галлон) × 0.052 × Удельный общий объём трубы (баррель/фут) Уд. внутр. объём обс. трубы/райзера (баррель/фут) - Удельный общий объём трубы (баррель/фут)

19. Снижение уровня в скважине при извлечении оставшихся УБТ без сифона (фут)

Длина УБТ (фут) × Удельный объём металла трубы (баррель/фут)
Уд. внутр. объём обс. трубы/райзера (баррель/фут)

20. Снижение уровня в скважине при извлечении оставшихся УБТ с сифоном (фут)

Длина УБТ (фут) × Удельный общий объём трубы (баррель/фут) Уд. внутр. объём обс. трубы/райзера (баррель/фут)

21. Длина труб, которую можно извлечь из скважины без сифона, до того, как забойное давление станет ниже пластового (фут)

Репрессия (psi) × (Уд. внутр. объём обс. трубы/райзера (баррель/фут) - Уд. объем металла трубы (баррель/фут))

Градиент флюида (psi/фут) × Уд. объём металла трубы (баррель/фут)

или

Репрессия (psi) × (Уд. внутр. объём обс. трубы/райзера (баррель/фут) - Уд. объем металла трубы (баррель/фут))
Плотность флюида (фунт/галлон) × 0.052 × Уд. объём металла трубы (баррель/фут)

22. Длина труб, которую можно извлечь из скважины с сифоном, до того, как забойное давление станет ниже пластового (фут)

Репрессия (psi) × (Уд. внутр. объём обс. трубы/райзера (баррель/фут) - Уд. общий объем трубы (баррель/фут))

Градиент флюида (psi/фут) × Уд. общий объём трубы (баррель/фут)

или

Репрессия (psi) × (Уд. внутр. объём обс. трубы/райзера (баррель/фут) - Уд. общий объем трубы (баррель/фут))
Плотность флюида (фунт/галлон) × 0.052 × Уд. общий объем трубы (баррель/фут)

23. Объем газа, стравливаемого вследствие миграции газа в вертикальной скважине (баррель)

Стравливаемое рабочее давление (psi)
$$\times \left(\frac{ \text{Удельный объем КП (баррель/фут)}}{ \Gamma \text{радиент давления (psi/фут)}} \right)$$

или

Стравливаемое рабочее давление (psi) $\times \left(\frac{ \text{Удельный объем КП (баррель/фут)}}{ \text{Плотность флюида (фунт/галлон)} \times 0.052} \right)$

24. Объём пачки утяжелённого раствора (баррель), закачиваемой в трубы для предупреждения сифона

Длина пустых труб (фут) × Уд. внутр. объем трубы (баррель/фут) × Плотность раствора в скважине (фунт/галлон)
Плотность утяжеленного раствора (фунт/галлон) - Плотность раствора в скважине (фунт/галлон)

25. Увеличение объёма в ёмкости вследствие стабилизации пачки утяжелённого раствора в трубах (баррель)

Объем пачки утяжеленного раствора (баррель) $\times \left(\frac{\Pi$ лотность утяжеленного раствора (фунт/галлон) - 1 $\right)$

26. Запас плотности раствора на случай удаления райзера (фунт/галлон)

((Выс. ротора над ур. моря (фут) + глуб. моря (фут)) × плот. р-ра (фунт/галлон)) - (глуб. моря (фут) × плот. воды (фунт/галлон)) ГСВ (фут) - Выс. ротора над ур. моря (фут) - глуб. моря (фут)

27. Снижение гидростатического давления при разрушении обратного клапана обсадной колонны (psi)

Плот. флюида (фунт/галлон) × 0.052 × Уд. внутр. объём обс. трубы (баррель/фут) × Высота незаполн. части обс. колонны (фут) Уд. внутр. объём обс. трубы (баррель/фут) + Уд. объём КП (баррель/фут)

May 2024 EX-0053 Version 3.0 Page 5 of 5