

Section 1. Filled-in kill sheet exercises – Gauge problem exercises

Gauge problem exercises are created from a pre-completed kill sheet containing all relevant volume and pressure calculations.

Each question is based on strokes, pump rate, drillpipe and casing gauge readings at a specific point in time during well kill operation. Any one or a combination of these readings could indicate the action required. Options are shown in the multiple-choice answers.

The casing and/or drillpipe pressures will only be relevant to the action if:

 The casing and/or drillpipe pressures given in the question are below the expected pressures.

or

• The casing and/or drillpipe pressures given in the question are 5 kg/cm² or more above the expected pressures.

Section 2. Calculation formula

Abbreviation	Term		
10	constant factor		
1	litres		
I/m	litres per minute		
I/min	litres per minute		
l/stroke	litres per stroke		
BHP	bottomhole pressure		
ВОР	blowout preventer		
m	metres		
m/hr	metres per hour		
m/min	metres per minute		
kg/l	kilogramme per litre		
LOT	leak-off test		
MAASP	maximum allowable annular surface pressure		
kg/cm ²	kilogram per square centimetre (pressure)		
kg/cm ² /m	kilogram per square centimetre per metre		
kg/cm ² /hr	kilogram per square centimetre per hour		
SICP	shut-in casing pressure		
SIDPP	shut-in drillpipe pressure		
SPM	strokes per minute		
TVD	true vertical depth		

1. Hydrostatic pressure (kg/cm²)

$$\frac{\text{fluid density (kg/l)} \times \text{TVD (m)}}{10}$$

2. Pressure gradient (kg/cm²/m)

3. Fluid density (kg/l)

hydrostatic pressure (kg/cm²) ÷ TVD (m) × 10 or
$$\frac{\text{hydrostatic pressure (kg/cm}^2) \times 10}{\text{TVD (m)}}$$

4. Formation pressure (kg/cm²)

hydrostatic pressure in drillstring (kg/cm²) + SIDPP (kg/cm²)

5. Pump output (I/min)

pump displacement (I/stroke) × pump rate (SPM)

6. Equivalent circulating density (kg/l)

fluid density (kg/l) + (annular pressure loss (kg/cm²) ÷ TVD (m) × 10) or fluid density (kg/l) +
$$\left(\frac{\text{annular pressure loss (kg/cm}^2) \times 10}{\text{TVD (m)}}\right)$$

7. Fluid density (kg/l) with trip margin (kg/cm²) included

fluid density (kg/l) + (trip margin (kg/cm²) ÷ TVD (m) × 10) or fluid density (kg/l) +
$$\left(\frac{\text{trip margin (kg/cm}^2)}{\text{TVD (m)}}\right)$$

8. New pump pressure (kg/cm²) with new pump rate (SPM) (approximate)

current pump pressure (kg/cm²) ×
$$\left(\frac{\text{new pump rate (SPM)}}{\text{current pump rate (SPM)}}\right)^2$$

9. New pump pressure (kg/cm²) with new fluid density (kg/l) (approximate)

current pump pressure
$$(kg/cm^2) \times \left(\frac{\text{new fluid density }(kg/l)}{\text{current fluid density }(kg/l)}\right)$$

10. Maximum allowable fluid density (kg/l)

LOT fluid density (kg/l) + (surface LOT pressure (kg/cm²) ÷ casing shoe TVD (m) × 10) or LOT fluid density (kg/l) +
$$\left(\frac{\text{surface LOT pressure (kg/cm}^2) \times 10}{\text{casing shoe TVD (m)}}\right)$$

11. MAASP (kg/cm²)

$$(maximum allowable fluid density (kg/l) - current fluid density (kg/l)) \times casing shoe TVD (m)$$

12. Kill fluid density (kg/l)

current fluid density (kg/l) + (SIDPP (kg/cm²) ÷ TVD(m) × 10)

or

current fluid density (kg/l) +
$$\left(\frac{\text{SIDPP (kg/cm}^2)}{\text{TVD (m)}}\right)$$

13. Initial circulating pressure (kg/cm²)

circulating pressure at kill rate (kg/cm²) + SIDPP (kg/cm²)

14. Final circulating pressure (kg/cm²)

$$\left(\frac{\text{kill fluid density (kg/l)}}{\text{current fluid density (kg/l)}}\right) \ \times \ \text{circulating pressure at kill rate (kg/cm}^2)$$

15. Gas migration rate (m/hr)

rate of increase in surface pressure $(kg/cm^2/hr) \div fluid density (kg/l) \times 10$

or

rate of increase in surface pressure $(kg/cm^2/hr) \times 10$ fluid density (kg/l)

16. Gas laws

$$P_1 \times V_1 = P_2 \times V_2$$

$$P_1 = \frac{P_2 \times V_2}{V_1} \qquad V_1 = \frac{P_2 \times V_2}{P_1}$$

$$P_2 = \frac{P_1 \times V_1}{V_2} \qquad \qquad V_2 = \frac{P_1 \times V_1}{P_2}$$

17. Pressure drop per metre tripping dry pipe (kg/cm²/m)

fluid density (kg/l) × metal displacement (l/m)

(riser or casing capacity (l/m) - metal displacement (l/m)) × 10

18. Pressure drop per metre tripping wet pipe (kg/cm²/m)

fluid density (kg/l) × closed end displacement (l/m)

(riser or casing capacity (l/m) - closed end displacement (l/m)) × 10

19. Level drop pulling remaining collars out of well dry (m)

length of collars (m) × metal displacement (l/m) riser or casing capacity (l/m)

20. Level drop pulling remaining collars out of well wet (m)

length of collars (m) × closed end displacement (l/m) riser or casing capacity (l/m)

21. Length of tubulars to pull dry before overbalance is lost (m)

$$\frac{\text{overbalance } \left(\text{kg/cm}^2\right) \times \left(\text{riser or casing capacity } (\text{l/m}) - \text{metal displacement } (\text{l/m})\right)}{\text{fluid gradient } \left(\text{kg/cm}^2/\text{m}\right) \times \text{metal displacement } (\text{l/m})}$$
or
$$\frac{\text{overbalance } \left(\text{kg/cm}^2\right) \times 10 \times \left(\text{riser or casing capacity} (\text{l/m}) - \text{metal displacement } (\text{l/m})\right)}{\text{fluid density } \left(\text{kg/l}\right) \times \text{metal displacement } \left(\text{l/m}\right)}$$

22. Length of tubulars to pull wet before overbalance is lost (m)

23. Volume to bleed due to gas migration (I)

working pressure to bleed (kg/cm²) ×
$$\left(\frac{\text{annular capacity (l/m)}}{\text{pressure gradient (kg/cm²/m)}}\right)$$
 or working pressure to bleed (kg/cm²) × $\left(\frac{\text{annular capacity (l/m)} \times 10}{\text{fluid density (kg/l)}}\right)$

24. Slug volume (I) for a given length of dry pipe

25. Pit gain due to slug U-tubing (I)

slug volume (I)
$$\times \left(\frac{\text{slug density (kg/l)}}{\text{current fluid density (kg/l)}} - 1 \right)$$

26. Riser margin (kg/l)

$$\frac{\left(\left(\text{air gap (m) + water depth (m)}\right) \times \text{ fluid density (kg/l)}\right) - \left(\text{water depth (m)} \times \text{water density (kg/l)}\right)}{\text{TVD (m) - air gap (m) - water depth (m)}}$$

27. Hydrostatic pressure loss if casing float fails (kg/cm²)

$$\frac{\text{fluid density (kg/l)} \times \text{casing capacity (l/m)} \times \text{unfilled casing height (m)}}{\left(\text{casing capacity (l/m)} + \text{annular capacity (l/m)}\right) \times 10}$$

	May 2024	EX-0194	Version 2.0	Page 5 of 5
--	----------	---------	-------------	-------------